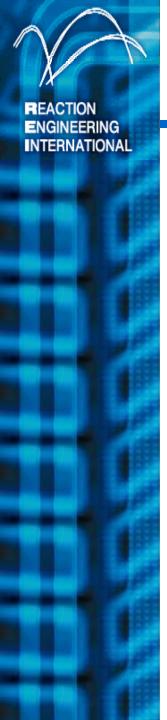


2004 Conference on Reburning for NOx Control DOE NETL

Evaluation of Co-firing and Reburning Biomass Syngas in a Coal-fired Boiler

B. Adams, H-S Shim

Reaction Engineering International

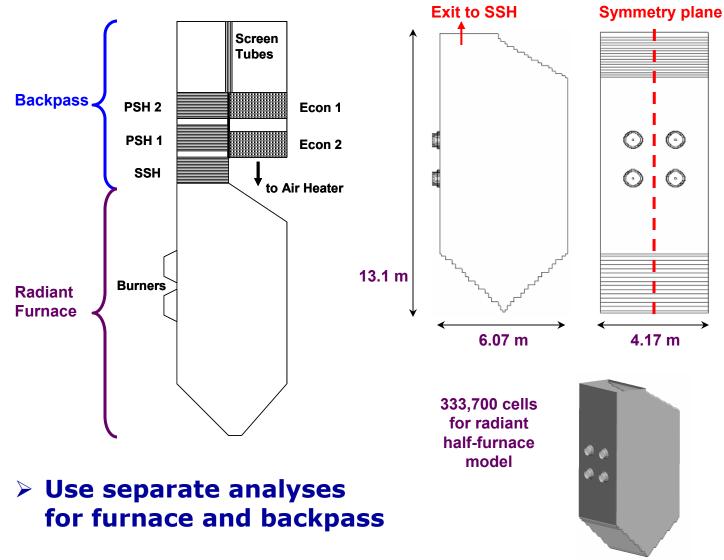

K-T Wu, H-T Lee, H-P Wan

Energy & Resources Laboratory – ITRI

S-L Chen

Pacific Rim Technologies

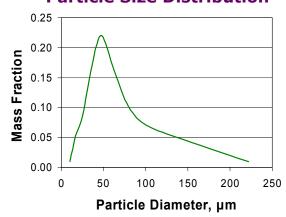
Morgantown, West Virginia
May 18, 2004



Project Objectives

- Evaluate the feasibility of syngas utilization in a coal-fired boiler
 - Syngas from gasified paper mill rejects
- Quantify impacts of syngas co-firing and reburning on:
 - NOx, CO, LOI
 - Furnace thermal efficiency
 - Corrosion
- Provide guidance on syngas injector design / boiler operation

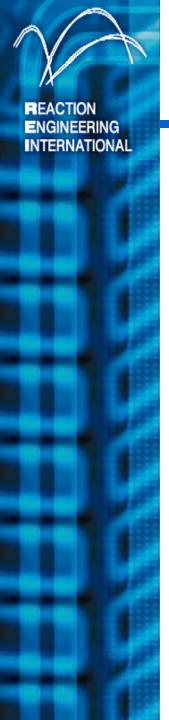
Furnace Design (70 tph steam)



Fuel Properties

Coal Properties

	Ping Shuo Coal			
	wt%-as rcvd			
С	65.59			
Н	3.95			
0	7.96			
N	1.2			
S	0.26			
Ash	12.64			
Moisture	8.4			
Volatile	25.62			
Fixed C	53.34			
HHV (BTU/lb)	11453			


Particle Size Distribution

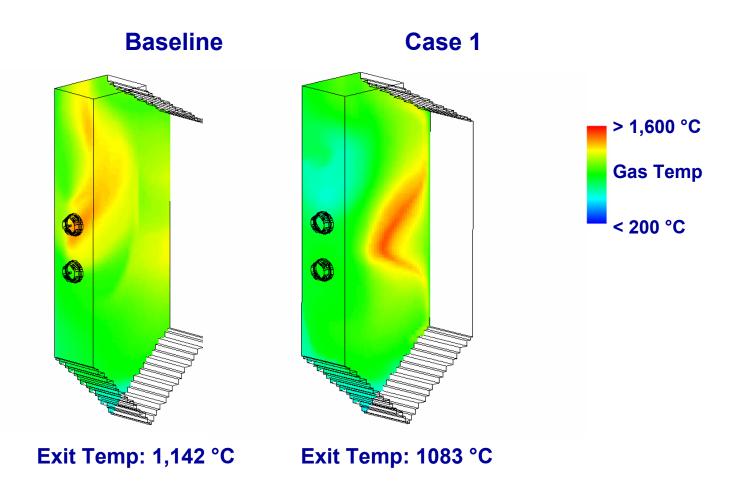
Syngas Properties

	Cases 1-4	Case 5
Moisture, %wet	22.78	21.99
N_2	46.96	49.42
H ₂	7.79	6.86
СО	5.17	4.37
CO ₂	11.64	12.47
CH₄	3.78	3.43
C ₂ H ₂	0.34	0.33
C ₂ H ₄	1.47	1.01
C ₂ H ₆	0.031	0.023
NH ₃	0.045	0.090
HCN	0.005	0.004
HHV, kcal/kg	1,247	1,085

- Low heating value
 (NG = 12,872 kcal/kg)
- Low hydrocarbons (~5%), H₂ and CO
- High NH₃ and HCl

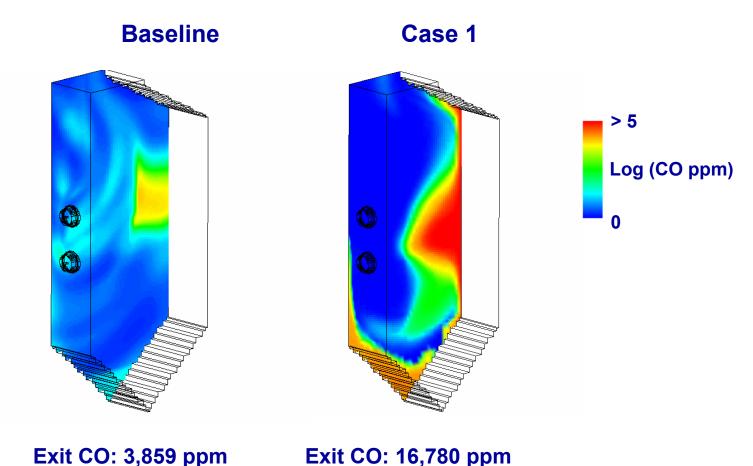
Summary of Cases

- Baseline Simulation
 - Coal only case
- Syngas co-firing (Case 1)
 - 5% heat input through burners
- Syngas reburning (Cases 2-4)
 - 10% heat input with fuel-lean reburning configuration (SR>1 above burners)
 - 10% heat input with lowered overall stoichiometric ratio
 - 23% heat input with traditional reburning configuration (SR<1 above burners, overfire air)
- Syngas composition change (Case 5)
 - Same operating conditions as Case 3

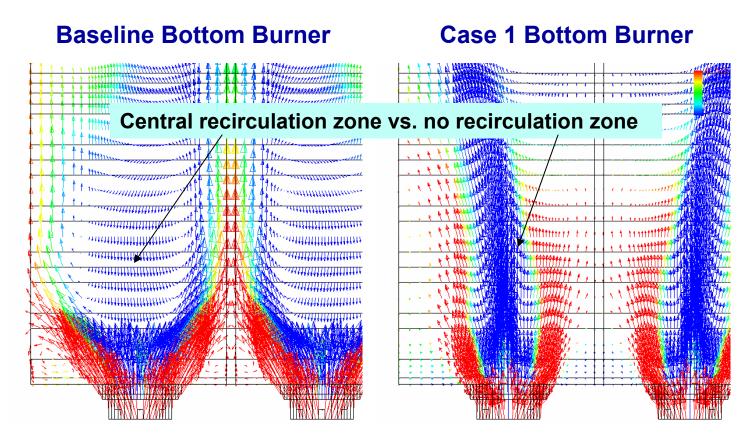

Baseline & Case 1 Inputs

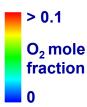
- Baseline: high swirl burners with no syngas
- Case 1: inject syngas at burner centerline
 - Enhance NH₃
 and HCN
 - Add FGR-type dilution effects
 - Need high volume of gas to replace coal
 - Syngas amount limited to 5% by burner size

	Base	case1	
Stoichiometric Ratio	1.30	1.30	
Exit O ₂ %, dry	4.95	4.95	
Total Firing Rate, 10⁶ BTU/hi	206.6	206.6	
Coal			
Feeding Rate, kg/hr	8,180	7,771	
Firing Rate, 10 ⁶ BTU/hr	206.6	196.2	
Syngas			
Heat Replacement	NA	<i>5</i> %	
Feeding Rate, kg/hr	NA	2,087	
Firing Rate, 10 ⁶ BTU/hr		10.3	
Primary Air			
% of Total Air	20.0%	20.0%	
Temp, °C	75	75	
Flow Rate, kg/sec	5.07	4.95	
Secondary Air			
% of Total Air	80.0%	80.0%	
Temp, °C	260	260	
Flow Rate, kg/sec	20.29	19.81	
Overfire Air			
% of Total Air	NA	NA	
Temp, °C			
Flow Rate, kg/sec			

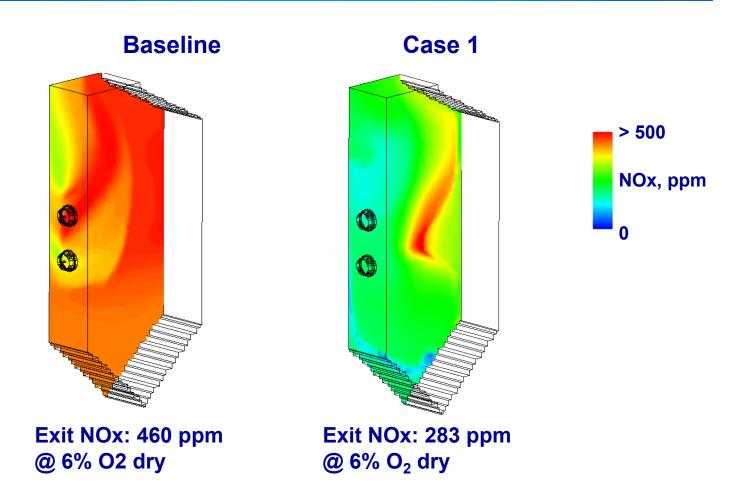

Furnace Temperature: Baseline & Case 1

Case 1 inefficient burner mixing leads to longer flame and lower exit temperature

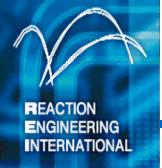

CO Concentration: Baseline & Case 1

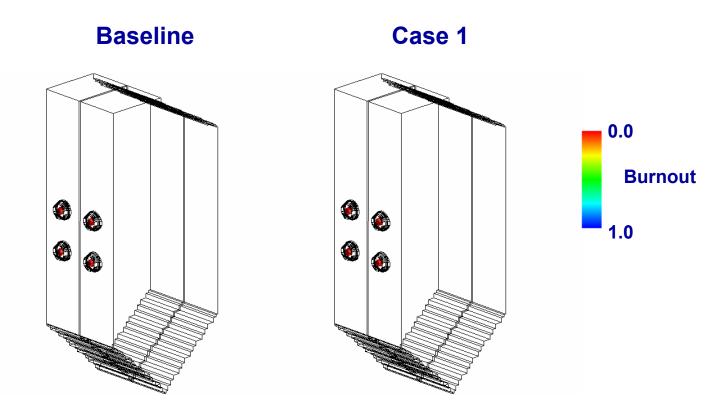

Case 1 has much higher CO due to poor mixing

Burner Flow Patterns: Baseline & Case 1



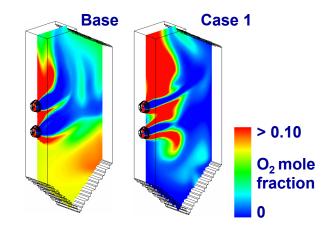
High velocity syngas injection eliminates recirculation zone and changes flame shape



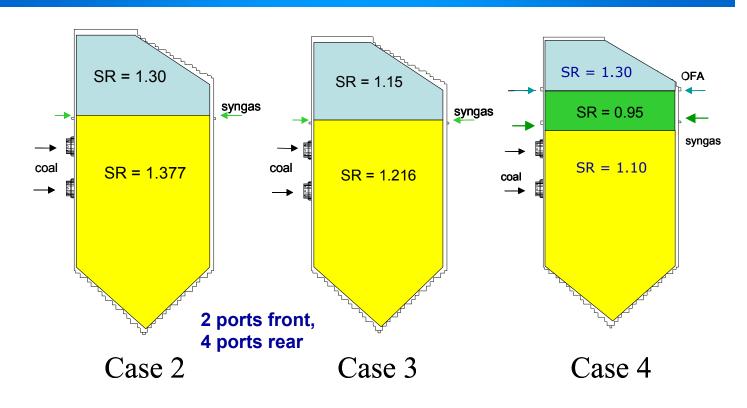

NOx Concentration: Baseline & Case 1

Case 1 has much lower NOx formation due to inefficient mixing

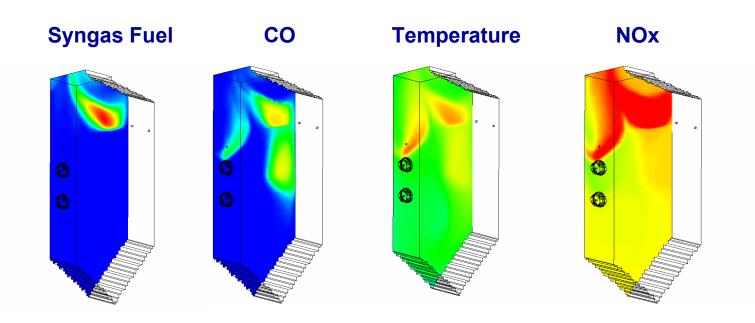
Particle Burnout: Baseline & Case 1


- > Burnout (LOI) depends on: coal reactivity, particle temperature, particle size, oxygen, residence time
- > Case 1 has more particle deposition on furnace walls

Baseline & Case 1 Summary

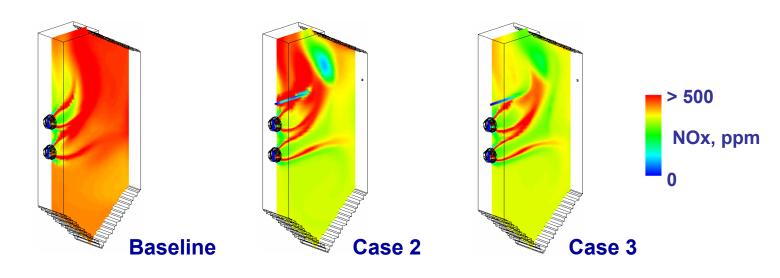

- Baseline has typical high swirl/high NOx flames
- Syngas burner injection collapsed burner recirculation zone & changed flame shape
 - Lower NOx
 - Higher CO and LOI (stratified O₂ distribution limits some particles oxygen exposure)
 - Flames/particles could impinge rear wall
- Case 1 not feasible for good combustion

RESULTS	Base	case1	
Furnace Exit Temp, °C	1,142	1,083	
Furnace Exit CO, dry ppm	3,859	16,780	
LOI Total, %	6.5	15.0	
Upper Burner Row LOI, %	11.1	22.7	
Lower Burner Row LOI, %	1	3.8	
NOx, 6% Dry, ppm	460	283	
% NOx Reduction		38	

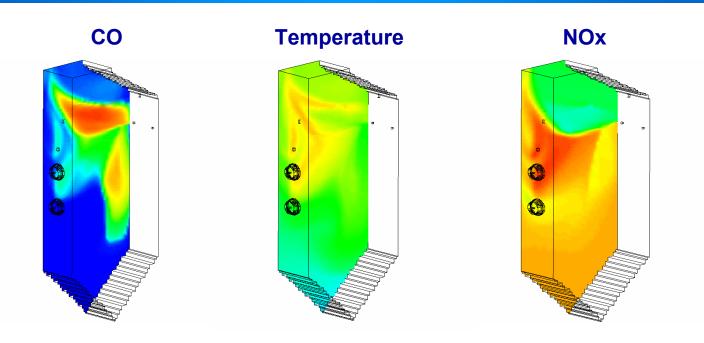

Syngas Reburning

- Use syngas to replace coal and to create fuel rich regions for NOx reduction (reburning)
- Cases 2&3: lean syngas reburning (LSR)
- > Case 4: traditional (overfire air) reburning

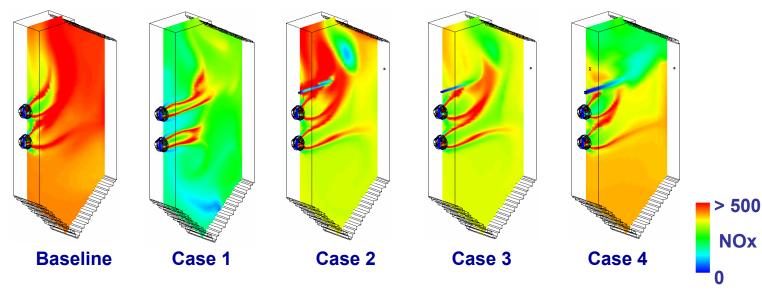
Case 2 Summary (LSR, 10% syngas, SR=1.30)

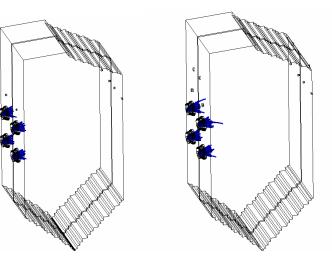


- NOx reduction in upper furnace balanced by higher NOx formation from burners – net 12% reduction
- CO and LOI lower than Baseline due to better mixing and increased burner oxygen


Case 3 Summary (LSR, 10% syngas, SR=1.15)

- Profiles similar to Case 2
- Lower furnace NOx similar to Case 2
- Lower oxygen produced less NOx in upper furnace and allowed more effective reburning
- Net 30% NOx reduction from Baseline
- Lower oxygen increased furnace exit CO and LOI (nearly triple Case 2)

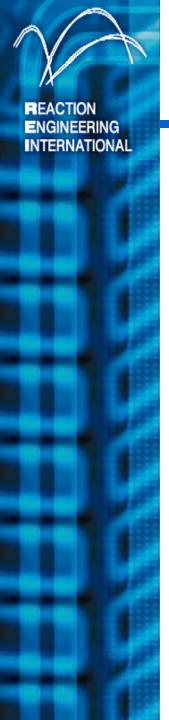

Case 4 Summary (TR, 23% syngas, 27% OFA, SR=1.30)


- Increased NOx reduction in reburn zone greater than increased NOx in lower furnace (net 46% reduction)
- > Low exit CO due to good OFA mixing
- LOI higher than Baseline and Case 2 due to less oxygen in burner zone and reburn zone

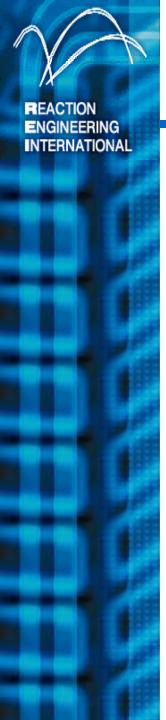
NOx Differences

- NOx impacted by:
 - Burner mixing
 - Burner stoichiometry
 - Furnace flow patterns
 - Syngas quantity & distribution
 - Furnace geometry

Cases 2-4 Summary


RESULTS	Base	case1	case2	case3	case4
Furnace Exit Temp, °C	1,142	1,083	1,164	1,182	1,201
Furnace Exit CO, dry ppm	3,859	16,780	2,061	6,396	190
LOI, %	6.5	15.0	4.0	11.0	8.6
NOx, 6% Dry, ppm	460	283	406	323	250
% NOx Reduction		38	12	30	46

- FEGT dependent on heat release elevation and SR change (Case 3)
- Exit CO dependent on SR and mixing
- LOI dependent on oxygen availability & mixing
- Traditional reburning gives best NOx reduction with minimal operational impacts


Case 5 Summary (LSR, 10% syngas, SR=1.15)

- Case 5 has same inputs as Case 3 except syngas composition
 - Lower heating value, more NH₃, less HCl
- Case 5 results almost identical to Case 3
- ➤ Why doesn't higher syngas NH₃ have a greater impact on NOx?
 - NH₃ concentration from coal flame is higher than from syngas, i.e., coal reactions dominate NOx formation
 - 10% syngas heat input is only ~5% of system mass flow → small changes in syngas composition do not effect syngas performance

Summary

- All reburning designs reduced NOx, but also produced operational impacts
- Lower excess oxygen resulted in lower NOx for lean syngas reburning
- Lowest NOx with traditional reburning design
 - Due to combination of suppressed formation and enhanced reduction above burners
 - Higher CH_i or CO syngas may be difficult to use due to short residence time for CO oxidation
- Performance not impacted by changes in syngas composition
- NOx reductions limited by boiler geometry
- Reburn design and effectiveness are boiler dependent

Additional Information

For more information contact REI at

www.reaction-eng.com